Age and Gender Detection Using Deep Learning Python Flask

The "Age and Gender Detection Using Deep Learning" Flask project aims to build a web application that can accurately detect the age and gender of a person from an input image. The project leverages deep learning techniques to analyze facial features and make predictions. The web application will provide an intuitive user interface where users can upload images and get real-time predictions for age and gender.

Key Features:

  1. Image Upload: The web application allows users to upload images containing human faces for analysis.
  2. Age Detection: The deep learning model will predict the age of the person in the uploaded image. The model is trained on a large dataset of facial images with corresponding age labels.
  3. Gender Detection: The model will also predict the gender of the person in the uploaded image as either male or female.
  4. Real-Time Prediction: The system provides real-time predictions and displays the age and gender results immediately after image upload.
  5. User-Friendly Interface: The Flask web application offers a user-friendly interface that is easy to navigate and interact with.

Technical Details:

  1. Deep Learning Model: The age and gender detection models are built using deep learning frameworks like TensorFlow or PyTorch. The age model is usually a regression model, while the gender model is a binary classification model.
  2. Convolutional Neural Network (CNN): The models are likely based on CNN architectures to effectively learn facial features and patterns for age and gender prediction.
  3. Flask Web Framework: The web application is developed using the Flask framework, which is a lightweight and easy-to-use Python web framework.
  4. HTML/CSS and JavaScript: The front-end of the web application is built using HTML/CSS for layout and design, while JavaScript may be used for dynamic elements and handling image uploads.
  5. Deployment: The application may be deployed on a web server using platforms like Heroku, AWS, or Microsoft Azure, making it accessible online.

Limitations:

  1. Accuracy: The accuracy of age and gender prediction depends on the quality and diversity of the training data. The model may not always provide precise predictions, especially for images with challenging angles, lighting, or occlusions.
  2. Face Detection: The system assumes that the input image contains only one face, and face detection is not a part of this project.
  3. Age Range: The model's predictions might be limited to a specific age range, and its accuracy might decrease for age groups outside the training data.

Conclusion:

The "Age and Gender Detection Using Deep Learning" Flask project is an exciting application that demonstrates the capabilities of deep learning in analyzing facial features for age and gender prediction. The real-time web interface enhances user experience, making it easy for users to explore the system's predictions. However, the project also acknowledges its limitations in terms of accuracy and the need for proper data representation. With further improvements and advancements in deep learning and dataset diversity, the system's performance could be enhanced in the future.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

Download Link 

Online Taxi Booking Python Django with Real time Map

Buy Now ₹6501

An online taxi booking Python Django project is a web-based application that allows users to book a taxi ride online through a user-friendly interface. The application integrates with real-time maps to show the location of available taxis and their estimated arrival times.

The project involves designing a database using Django's built-in ORM to store user and ride data. The application's frontend is created using HTML, CSS, and JavaScript to provide an interactive user interface for booking rides, tracking ride progress, and paying for rides.

The Python code interacts with the database to retrieve user data, such as name, email, and payment information, and with real-time map APIs to display the location of available taxis and their estimated arrival times. It uses algorithms to match user requests with available taxis, manage ride progress, and calculate fare amounts.

Some key features of an online taxi booking Python Django project may include:

  1. User registration and login
  2. Ride booking and tracking
  3. Real-time map integration
  4. Payment processing and receipt generation
  5. Ride history and user reviews
  6. Driver and vehicle management
  7. Ride cancellation and refund management
  8. Mobile app integration

Overall, an online taxi booking Python Django project provides a convenient and user-friendly way for users to book and track taxi rides, while providing drivers with a simple way to manage their bookings and pickups. The real-time map integration helps to minimize wait times and improve the overall user experience.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Django: Project has been developed over the Django Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.7.0, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python manage.py runserver

Online Time Table Generator PHP MYSQL

A timetable generator PHP MySQL project is a web-based application that generates a schedule of classes for a school or university based on the available courses, teachers, and classrooms. The application helps to reduce the time and effort required to manually create a timetable and minimize scheduling conflicts between classes, teachers, and classrooms.

The project typically involves designing a database using MySQL to store the necessary information such as course details, teacher information, classroom availability, and scheduling time slots. The application's frontend is created using HTML, CSS, and JavaScript to create an interactive user interface for managing the information.

The PHP code interacts with the MySQL database to retrieve the necessary data to generate the timetable. It uses algorithms to schedule classes and manage conflicts, and displays the final timetable in a user-friendly format, typically an HTML table.

Some key features of a timetable generator PHP MySQL project may include:

  1. Ability to add, edit, and delete courses, teachers, and classrooms
  2. Ability to define scheduling time slots and the duration of each class
  3. Ability to automatically schedule classes and manage conflicts such as double-booked classrooms or teachers
  4. Ability to generate different views of the timetable, such as weekly or monthly views
  5. Ability to print the timetable or export it to other formats such as PDF or Excel

Overall, a timetable generator PHP MySQL project helps to automate the process of creating and managing schedules for educational institutions, thereby saving time and effort while improving efficiency and reducing scheduling conflicts.

Users Roles :

  1. Admin
  2. Teacher/Consultant/Faculty
  3. Student

Admin : The page require user id and password to start the application.

Login is a process by which individual access to a computer system is controlled by identifying and authenticating the user through the cardinalities presented by the user.

Admin can add or delete the category, subcategory etc.

Teacher : Staff can register by admin.

The staff have to login to get more information about the time schedule Dashboard.

Student: Student can register the account by clicking on new register.

He/she can add the account for the various Courses.

The student have to login to get more information about the time schedule.

Brief overview of the technology

Front end: HTML, CSS, JavaScript

  1. HTML: HTML is used to create and save web document. E.g. Notepad/Notepad++
  2. CSS : (Cascading Style Sheets) Create attractive Layout
  3. Bootstrap : responsive design mobile freindly site
  4. JavaScript: it is a programming language, commonly use with web browsers.

Back end: PHP, MySQL

  1. PHP: Hypertext Preprocessor (PHP) is a technology that allows software developers to create dynamically generated web pages, in HTML, XML, or other document types, as per client request. PHP is open source software.
  2. MySQL: MySql is a database, widely used for accessing querying, updating, and managing data in databases.

Software Requirement(any one) 

  1. WAMP Server
  2. XAMPP Server
  3. MAMP Server
  4. LAMP Server
  5. Xamp PHP 5.5 download link -  Click Here

How to Run

Requirements

  1. Download and Install any local web server such as XAMPP/WAMP.
  2. Download the provided source code zip file. (download button is located below)

Installation/Setup ( Note : Watch Above Demo Video to  Underatand )

  1. Open your XAMPP/WAMP's Control Panel and start the Apache and MySQL.
  2. Extract the downloaded source code zip file.
  3. If you are using XAMPP, copy the extracted source code folder and paste it into the XAMPP's "htdocs" directory. And If you are using WAMP, paste it into the "www" directory.
  4. Browse the PHPMyAdmin in a browser. i.e. http://localhost/phpmyadmin
  5. Create a new database naming Database Name.
  6. Import the provided SQL file. The file is known as timetable.sql located inside the db folder.
  7. Browse the Online Clothi Store in a browser. i.e. http://localhost/Project Folder Name/ .

Download Link

Iris Flower Classification with Decision Trees Web App

Objective:

To build a web application that can accurately classify Iris flower species based on their sepal and petal characteristics using a Decision Tree machine learning algorithm.

Dataset: The Iris flower dataset, which contains 150 samples of Iris flowers, each with measurements for sepal length, sepal width, petal length, and petal width. The dataset is labeled with the species of each flower: Iris setosa, Iris versicolor, and Iris virginica.

Methodology:

  1. Data Preprocessing: Load the dataset and split it into training and testing sets. Perform feature scaling to normalize the data.
  2. Decision Tree Model Building: Train a decision tree model on the training data using scikit-learn library. Tune the hyperparameters of the model to obtain the best performance.
  3. Web App Development: Use Flask web framework to create a web app that allows users to input the sepal and petal measurements of an Iris flower and displays the predicted species using the trained decision tree model.
  4. Model Interpretation: Interpret the decision tree to gain insights into which features are most important in classifying the Iris flower species.

Tools and Technologies:

  1. Python
  2. scikit-learn
  3. Flask
  4. HTML
  5. CSS
  6. pandas
  7. numpy
  8. matplotlib.

Conclusion:

Decision Trees are a simple yet powerful machine learning algorithm for classification tasks. In this project, we have built a decision tree model to classify Iris flower species with high accuracy and developed a web application that allows users to interactively predict the species of an Iris flower based on its sepal and petal measurements. The web app can be used for real-world applications such as plant identification, environmental monitoring, and plant breeding.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

Download