Age and Gender Detection Using Deep Learning Python Flask

The "Age and Gender Detection Using Deep Learning" Flask project aims to build a web application that can accurately detect the age and gender of a person from an input image. The project leverages deep learning techniques to analyze facial features and make predictions. The web application will provide an intuitive user interface where users can upload images and get real-time predictions for age and gender.

Key Features:

  1. Image Upload: The web application allows users to upload images containing human faces for analysis.
  2. Age Detection: The deep learning model will predict the age of the person in the uploaded image. The model is trained on a large dataset of facial images with corresponding age labels.
  3. Gender Detection: The model will also predict the gender of the person in the uploaded image as either male or female.
  4. Real-Time Prediction: The system provides real-time predictions and displays the age and gender results immediately after image upload.
  5. User-Friendly Interface: The Flask web application offers a user-friendly interface that is easy to navigate and interact with.

Technical Details:

  1. Deep Learning Model: The age and gender detection models are built using deep learning frameworks like TensorFlow or PyTorch. The age model is usually a regression model, while the gender model is a binary classification model.
  2. Convolutional Neural Network (CNN): The models are likely based on CNN architectures to effectively learn facial features and patterns for age and gender prediction.
  3. Flask Web Framework: The web application is developed using the Flask framework, which is a lightweight and easy-to-use Python web framework.
  4. HTML/CSS and JavaScript: The front-end of the web application is built using HTML/CSS for layout and design, while JavaScript may be used for dynamic elements and handling image uploads.
  5. Deployment: The application may be deployed on a web server using platforms like Heroku, AWS, or Microsoft Azure, making it accessible online.

Limitations:

  1. Accuracy: The accuracy of age and gender prediction depends on the quality and diversity of the training data. The model may not always provide precise predictions, especially for images with challenging angles, lighting, or occlusions.
  2. Face Detection: The system assumes that the input image contains only one face, and face detection is not a part of this project.
  3. Age Range: The model's predictions might be limited to a specific age range, and its accuracy might decrease for age groups outside the training data.

Conclusion:

The "Age and Gender Detection Using Deep Learning" Flask project is an exciting application that demonstrates the capabilities of deep learning in analyzing facial features for age and gender prediction. The real-time web interface enhances user experience, making it easy for users to explore the system's predictions. However, the project also acknowledges its limitations in terms of accuracy and the need for proper data representation. With further improvements and advancements in deep learning and dataset diversity, the system's performance could be enhanced in the future.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

Download Link 

Fire Detection Using Surveillence Camera web app Project with Source Code

Buy Now ₹1501

Introduction:

The objective of this project is to develop a web application that uses surveillance cameras to detect fire and alert users in real-time. The application uses computer vision algorithms and machine learning techniques to analyze video footage from the cameras and detect the presence of fire. The project aims to improve fire safety by detecting potential fire hazards early and allowing users to take appropriate action.

Methods:

The project involved several steps, including collecting and labeling a dataset of video footage that contained both fire and non-fire events, preprocessing the video footage to extract individual frames, and training a machine learning model using the preprocessed dataset. The machine learning model was a convolutional neural network (CNN) that was trained to detect the presence of fire in an image.

Once the machine learning model was trained, a web application was developed that allowed users to upload video footage from their surveillance cameras. The uploaded footage was analyzed frame by frame using the trained machine learning model to detect the presence of fire. If fire was detected, the application triggered an alert and notified the user via email or SMS. The application also provided a live video feed from the surveillance camera and highlighted the region where the fire was detected.

Results:

The developed web application was able to accurately detect the presence of fire in video footage from surveillance cameras. The machine learning model achieved an accuracy of over 95% on the test dataset, indicating that it was able to accurately distinguish between fire and non-fire events. The web application was also able to provide real-time alerts and notifications to users when fire was detected, allowing them to take appropriate action.

Discussion:

The developed web application has several potential applications in improving fire safety in buildings. For example, it can be used in warehouses, factories, and other industrial settings where fire hazards are common. The application can also be used in homes and other residential settings, alerting residents to potential fire hazards in real-time.

The project has several limitations that should be considered. One limitation is the need for high-quality video footage from surveillance cameras. The accuracy of the machine learning model is highly dependent on the quality of the video footage. Another limitation is the need for periodic retraining of the machine learning model to ensure that it continues to accurately detect fire over time.

Conclusion:

The project has demonstrated the feasibility of using surveillance cameras and machine learning algorithms to develop a web application for fire detection. The application has the potential to improve fire safety in various settings, including industrial and residential settings. Further research is needed to optimize the accuracy of the machine learning model and to develop additional features that can enhance the functionality of the application.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

Automated Answer Grading System machine learning project

Buy Source Code ₹1501

Buy Project Report ₹1001

An Automated Answer Grading System is a machine learning-based Django project that allows teachers to automatically grade student answers in a fast and efficient manner. The system will use natural language processing techniques to analyze and compare the student's answer to the correct answer and assign a grade based on how closely the two match.

The project will consist of a web-based interface that teachers can use to upload student answers and view the results. Teachers will also have the ability to view detailed reports on student performance, including overall scores and breakdowns of individual question scores.

The system will be trained using a dataset of correct and incorrect answers, which will be used to develop the machine learning model that will be used to grade the student's answers. The model will use various natural language processing techniques such as text similarity, sentiment analysis, and topic modeling to compare the student's answer to the correct answer.

The project will be built using the Django web framework and will be hosted on a cloud platform such as AWS or Google Cloud. The frontend of the system will be designed using HTML, CSS, and JavaScript and will provide an easy-to-use and intuitive interface for teachers to interact with.

Overall, the Automated Answer Grading System will be a powerful tool for teachers that will allow them to grade student answers quickly and accurately, freeing up more time for other important teaching tasks.

Dataset

The dataset used is the Kaggle’s Automatic Essay Scoring dataset,can be downloaded from https://www.kaggle.com/c/asap-aes/data

Results

The models were tested using kappa statistic which is intending to compare labelling by different human annotators, not a classifier versus a ground truth. The kappa score is a number between -1 and 1. Scores above .8 are generally considered good agreement,zero or lower means no agreement For this project we have used an Algorithm in which we Combine all the topics into a single model and predicted the score using bi-directional LSTM. kappa score obtained is 0.74

 

Movie Recommendation System Project Using Collaborative Filtering, Python Django, Machine Learning

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹2501

( Note : Project Included with Complete Source code Database Plus Documentation, Synopsis, Report)

Recommender systems are one of the most successful and widespread application of machine learning technologies in business. You can find large scale recommender systems in retail, video on demand, or music streaming.

A Web Base user-item Movie Recommendation Engine using Collaborative Filtering By matrix factorizations algorithm and thus the advice supported the underlying concept is that if two persons both liked certian common movies,then the films that one person has liked that the opposite person has not yet watched are often recommended to him.

A recommender system is a type of information recommend movies to user according to their area of interest. Our recommender system provide personalized information by learning the user‟s interests from previous interactions with that user[2]. In pattern recognition, the knearest neighbours algorithm (k-NN) is a flexible method used for classification. In following cases, the input consists of the k closest examples in given space. If k = 1, then the object is simply assigned to the class of that single nearest neighbour.

Project Features :-

  1. User can register and login.
  2. User can search through various movies and look through its details.
  3. User can give rating to the movies.
  4. User can add movie to their watch list.
  5. User can get movie recommendation (Recommendation algorithm (Collaborative Filtering) which suggests new movies based on the ratings given by user.)

Algorithm :

Collabortive Filtering (Recommender Algorithm)
  1. Collaborative filtering filters information by using the interactions and data collected by the system from other users. It's based on the idea that people who agreed in their evaluation of certain items are likely to agree again in the future.

  2. When we want to find a new movie to watch we'll often ask our friends for recommendations. Naturally, we have greater trust in the recommendations from friends who share tastes similar to our own.

  3. Collaborative-filtering systems focus on the relationship between users and items. The similarity of items is determined by the similarity of the ratings of those items by the users who have rated both items.

  4. There are two types of collaborative filtering

    1. User-based, which measures the similarity between target users and other users.
    2. Item-based, which measures the similarity between the items that target users rate or interact with and other items.

    I have used user based collaborative filtering in this project.

Technologies Used

Web Technologies

Html , Css , JavaScript , Bootstrap , Django

Machine Learning Library In Python3

Numpy , Pandas , Scipy

Database

SQLite

Requirements
python 3.7

pip3

virtualenv

Installation

pip install -r requirements.txt --user

Run server locally

$ python manage.py runserver

Go to localhost:8000

  1. Admin email - admin@admin.com
  2. admin pass - admin

Read Before Purchase  :

  1. One Time Free Installation Support.
  2. Terms and Conditions on this page: https://projectworlds/terms
  3. We offer Paid Customization installation Support
  4.  If you have any questions please contact  Support Section
  5. Please note that any digital products presented on the website do not contain malicious code, viruses or advertising. You buy the original files from the developers. We do not sell any products downloaded from other sites.
  6. You can download the product after the purchase by a direct link on this page.