Automated Answer Grading System machine learning project

Buy Source Code ₹1501

Buy Project Report ₹1001

An Automated Answer Grading System is a machine learning-based Django project that allows teachers to automatically grade student answers in a fast and efficient manner. The system will use natural language processing techniques to analyze and compare the student's answer to the correct answer and assign a grade based on how closely the two match.

The project will consist of a web-based interface that teachers can use to upload student answers and view the results. Teachers will also have the ability to view detailed reports on student performance, including overall scores and breakdowns of individual question scores.

The system will be trained using a dataset of correct and incorrect answers, which will be used to develop the machine learning model that will be used to grade the student's answers. The model will use various natural language processing techniques such as text similarity, sentiment analysis, and topic modeling to compare the student's answer to the correct answer.

The project will be built using the Django web framework and will be hosted on a cloud platform such as AWS or Google Cloud. The frontend of the system will be designed using HTML, CSS, and JavaScript and will provide an easy-to-use and intuitive interface for teachers to interact with.

Overall, the Automated Answer Grading System will be a powerful tool for teachers that will allow them to grade student answers quickly and accurately, freeing up more time for other important teaching tasks.

Dataset

The dataset used is the Kaggle’s Automatic Essay Scoring dataset,can be downloaded from https://www.kaggle.com/c/asap-aes/data

Results

The models were tested using kappa statistic which is intending to compare labelling by different human annotators, not a classifier versus a ground truth. The kappa score is a number between -1 and 1. Scores above .8 are generally considered good agreement,zero or lower means no agreement For this project we have used an Algorithm in which we Combine all the topics into a single model and predicted the score using bi-directional LSTM. kappa score obtained is 0.74

 

Fake News Detection using Machine Learning Natural Language Processing

Subscribe YouTube For Latest Update Click Here

Buy Source Code ₹1501

Buy Project Report  ₹1001

Fake News Detection using Machine Learning Natural Language Processing . A NLP and Machine Learning based web application used for detecting fake news. Uses NLP for preprocessing the input text. Uses XGBoost model for predicting whether the input news is Fake or Real.

here are tons of stories articles, where the news is fake or cooked up. With numerous advances in tongue Processing and machine learning, we will actually build an ml model which is in a position to detect if a bit of stories ... Here we'll be using artificial neural network models to verify the genuinity of the article.

Technologies Used

Web Technologies

Html , Css , JavaScript , Bootstrap , Django

Machine Learning Library In Python3

Numpy , Pandas , Scipy
matplotlib
scikit-learn
seaborn

Database

SQLite

Dataset Link: https://www.kaggle.com/c/fake-news/data

Training Model File 

Fake_News_Classifier_Using_LSTM.ipynb

Fake_News_Classifier_using_Machine_Learning.ipynb

Output Generated File

xgb_fake_news_predictor.pkl