Plant Disease Prediction using CNN Flask Web App

Buy Now Source Code ₹1501

Buy Now Project Report ₹1001

The plant disease prediction Flask project is a web application that utilizes machine learning algorithms to predict whether a plant is healthy or diseased based on an image of the plant. The project involves building a machine learning model that can classify plant images as healthy or diseased and integrating this model into a Flask web application.

The project generally consists of the following steps:

  1. Data collection: Collect images of healthy plants and plants with different types of diseases.
  2. Data preprocessing: Clean and prepare the image data for use in the machine learning model.
  3. Model training: Train a machine learning model using the preprocessed image data.
  4. Model evaluation: Evaluate the performance of the machine learning model to ensure it can accurately classify plant images.
  5. Flask app development: Develop a Flask web application that allows users to upload images of plants and get a prediction of whether the plant is healthy or diseased.
  6. Deployment: Deploy the web application to a server so that it can be accessed by users.

Overall, the plant disease prediction Flask project is an innovative solution to the problem of identifying plant diseases and can be a valuable tool for farmers and researchers.

Overview of the CNN algorithm:

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that are well-suited for image classification tasks. The key idea behind CNNs is to learn a set of filters that can be used to extract meaningful features from the input image. These filters are learned automatically during the training process.

Here are the main steps involved in a CNN algorithm:

  1. Convolution: The input image is convolved with a set of learnable filters. The filters are applied to small patches of the image and slide across the entire image to produce a set of feature maps.
  2. ReLU Activation: The feature maps are passed through a Rectified Linear Unit (ReLU) activation function, which applies a non-linear transformation to the output of each convolutional layer.
  3. Pooling: The feature maps are downsampled using a pooling operation, which reduces the spatial dimensionality of the feature maps while retaining the most important features.
  4. Fully Connected Layers: The output of the convolutional and pooling layers is flattened and passed through one or more fully connected layers, which compute the final classification scores.
  5. Softmax Activation: The final layer uses a softmax activation function to produce a probability distribution over the possible classes.
  6. Training: During training, the CNN is fed a set of labeled images and adjusts the weights of its filters to minimize the difference between the predicted output and the actual output.
  7. Evaluation: After training, the CNN is evaluated on a separate set of images to measure its performance. This involves computing metrics such as accuracy, precision, recall, and F1 score.

Overall, CNNs have achieved state-of-the-art performance on a wide range of image classification tasks, including plant disease prediction.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

 

Fire Detection Using Surveillence Camera web app Project with Source Code

Buy Now ₹1501

Introduction:

The objective of this project is to develop a web application that uses surveillance cameras to detect fire and alert users in real-time. The application uses computer vision algorithms and machine learning techniques to analyze video footage from the cameras and detect the presence of fire. The project aims to improve fire safety by detecting potential fire hazards early and allowing users to take appropriate action.

Methods:

The project involved several steps, including collecting and labeling a dataset of video footage that contained both fire and non-fire events, preprocessing the video footage to extract individual frames, and training a machine learning model using the preprocessed dataset. The machine learning model was a convolutional neural network (CNN) that was trained to detect the presence of fire in an image.

Once the machine learning model was trained, a web application was developed that allowed users to upload video footage from their surveillance cameras. The uploaded footage was analyzed frame by frame using the trained machine learning model to detect the presence of fire. If fire was detected, the application triggered an alert and notified the user via email or SMS. The application also provided a live video feed from the surveillance camera and highlighted the region where the fire was detected.

Results:

The developed web application was able to accurately detect the presence of fire in video footage from surveillance cameras. The machine learning model achieved an accuracy of over 95% on the test dataset, indicating that it was able to accurately distinguish between fire and non-fire events. The web application was also able to provide real-time alerts and notifications to users when fire was detected, allowing them to take appropriate action.

Discussion:

The developed web application has several potential applications in improving fire safety in buildings. For example, it can be used in warehouses, factories, and other industrial settings where fire hazards are common. The application can also be used in homes and other residential settings, alerting residents to potential fire hazards in real-time.

The project has several limitations that should be considered. One limitation is the need for high-quality video footage from surveillance cameras. The accuracy of the machine learning model is highly dependent on the quality of the video footage. Another limitation is the need for periodic retraining of the machine learning model to ensure that it continues to accurately detect fire over time.

Conclusion:

The project has demonstrated the feasibility of using surveillance cameras and machine learning algorithms to develop a web application for fire detection. The application has the potential to improve fire safety in various settings, including industrial and residential settings. Further research is needed to optimize the accuracy of the machine learning model and to develop additional features that can enhance the functionality of the application.

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py