Posted on

Hypo Thyroid Disease prediction Machine Learning Project

Hypo Thyroid Disease prediction Machine Learning Project

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Hypothyroid diseases (underactive thyroid) is a condition in which the body doesn't produce enough of important thyroid hormones. The condition may lead to various symptoms at late ages. More information about the disease is available at .

The Data

The data was from: I used "" for the analysis. "allhypo.names" contains the column names of the data. Include the info about primary data processing in the Jupyter notebook list below.

set of algorithms performed to carry out the analysis of the "thyroid-disease" database published in the UCI page
URL data source


  • Naıve Bayes
  • KNN
  • ANN
  • Random Forest
  • SVM
  • FSF
  • PCA
  • LCA

Related sources

Ionita, Irina. (2016). Prediction of Thyroid Disease Using Data Mining Techniques. BRAIN. Broad Research in Artificial Intelligence and Neuroscience. Vol.7. pp.115-124.

Ammulu K., Venugopal. (2017). Thyroid Data Prediction using Data Classification Algorithm. IJIRST –International Journal for Innovative Research in Science & Technology. Vol.4. Issue 2. July 2017. ISSN (online): 2349-6010

Geetha K., Santosh S. Eficient Thyroid Disease Classification Using Differential Evolution with SVM. Journal of Theoretical and Applied Information Technology. Vol.88. No.3. E-ISSN: 1817-3195

Banu, Gulmohamed. (2016). Predicting Thyroid Disease using Linear Discriminant Analysis (LDA) Data Mining Technique. Communications on Applied Electronics. 4. 4-6. 10.5120/cae2016651990. URL:

Lou H, Wang L, Duan D, Yang C,Mammadov M (2018) RDE: A novel approach to improve the classification performance and expressivity of KDB. PLoS ONE 13(7): e0199822. URL:

Read Before Purchase  :

  1. One Time Free Installation Support.
  2. Terms and Conditions on this page: https://projectworlds/terms
  3. We offer Paid Customization installation Support
  4.  If you have any questions please contact  Support Section
  5. Please note that any digital products presented on the website do not contain malicious code, viruses or advertising. You buy the original files from the developers. We do not sell any products downloaded from other sites.
  6. You can download the product after the purchase by a direct link on this page.