Medical Insurance Cost Prediction Project in Python Flask

Click YouTube Play Button to Play Video Demo

Latest Machine Learning Project with Source Code

Medical Insurance Cost Prediction using Random Forest Regressor.

To predict things have been never so easy. I used to wonder how Insurance amount is charged normally. So, in the mean time I came across this dataset and thought of working on it! Using this I wanted to know how few features determine our insurance amount!

Features

  1. Exploring the dataset
  2. Converting Categorical values to Numerical
  3. Plotting Heatmap to see dependency of Dependent valeu on Independent features
  4. Data Visualization (Plots of feature vs feature)
  5. Plotting Skew and Kurtosis
  6. Data Preparation
  7. Prediction using Linear Regression
  8. Prediction using SVR
  9. Prediction using Ridge Regressor
  10. Prediction using Random Forest Regressor
  11. Performing Hyper tuning for above mentioned models
  12. Plotting Graph for all Models to compare performance
  13. Preparing model for deployment
  14. Deployed model using Flask

Results

Model gave 86% accuracy for Medical Insurance Amount Prediction using Random Forest Regressor

Dataset

The dataset used can be downloaded here (Kaggle) - Click to Download

Installation Steps :-

  1. Install Python 3.7.0
  2. Install all dependencies cmd -python -m pip install --user -r requirements.txt
  3. Finally run cmd - python app.py

 

Download Link 

Breast Cancer Prediction Machine Learning Project Source Code

Click To YouTube Play ICON For Video Demo

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Buy Now Project Report ₹1001

Breast cancer is the most common type of cancer in women. When cancers are found early, they can often be cured. There are some devices that detect the breast cancer but many times they lead to false positives, which results is patients undergoing painful, expensive surgeries that were not even necessary. These type of cancers are called benign which do not require surgeries and we can reduce these unnecessary surgeries by using Machine Learning. We take a dataset of the previous breast cancer patients and train the model to predict whether the cancer is benign or malignant. These predictions will help doctors to do surgeries only when the cancer is malignant, thus reducing the unnecessary surgeries for woman.

Models 

Logistic Regression model is developed based on 10 features that classify whether the breast cancer is benign or malignant. For classifying the patient, users are requested to submit their data on this following form as per the value range.

Languages  Used

  • Python: language
  • NumPy: library for numerical calculations
  • Pandas: library for data manipulation and analysis
  • SkLearn: library which features various classification, regression and clustering algorithms
  • Flask: microframework for building web applications using Python.

Installation Steps :-

  • Install Python 3.7.0
  • Install all dependencies cmd -python -m pip install --user -r requirements.txt
  • Finally run cmd - python app.py

 

IMDB Sentiment Analysis based on comment Machine Learning

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

his is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training and 25,000 for testing. So, predict the number of positive and negative reviews using either classification or deep learning algorithms.

Computer Vision is the branch of the science of computers and software systems which can recognize as well as understand images and scenes. Computer Vision is consists of various aspects such as image recognition, object detection, image generation, image super-resolution and many more. Object detection is widely used for face detection, vehicle detection, pedestrian counting, web images, security systems and self-driving cars. In this project, we are using highly accurate object detection-algorithms and methods such as R-CNN, Fast-RCNN, Faster-RCNN, RetinaNet and fast yet highly accurate ones like SSD and YOLO. Using these methods and algorithms, based on deep learning which is also based on machine learning require lots of mathematical and deep learning frameworks understanding by using dependencies such as TensorFlow, OpenCV, imageai etc, we can detect each and every object in image by the area object in an highlighted rectangular boxes and identify each and every object and assign its tag to the object. This also includes the accuracy of each method for identifying objects.

Requirements.txt

  1. flasgger==0.9.4
  2. Flask==1.0.3
  3. gunicorn==19.9.0
  4. itsdangerous==1.1.0
  5. Jinja2==2.10.1
  6. MarkupSafe==1.1.1
  7. Werkzeug==0.15.5
  8. numpy==1.18.1
  9. scipy==1.4.1
  10. scikit-learn==0.22.1
  11. matplotlib==3.2.1
  12. pandas==1.0.3
  13. nltk==3.4.5

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

Download Link

 

 

Salary Prediction using Machine Learning Web App

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Salary Prediction Based on work experience ML Web App. The purpose of this project is to use data transformation and machine learning to create a model that will predict a salary when given years of experience, job type. The purpose of this project is to use data transformation and machine learning to create a model that will predict a salary when given years of experience, job type.

Data The data for this model is fairly simplified as it has very few missing pieces. The raw data consists of a training dataset with the features listed above and their corresponding salaries.

Information Used To Predict Salaries Years Experience: How many years of experience .

This model can be used as a guide when determining salaries since it shows reasonable predictions when given information on years of experience.

Methods Used

  1. Data Analysis and Visualization
  2. Linear Regression
  3. Polynomial Transformation
  4. Ridge Regression
  5. Random Forest

Technologies/Libraries Used

  1. Python 3
  2. Pandas
  3. NumPy
  4. Seaborn
  5. Scikit-learn
  6. Matplotlib
  7. SciPy
  8. Jupyter

Data

The data for this model is fairly simplified as it has very few missing pieces. The raw data consists of a training dataset with the features listed above and their corresponding salaries. Twenty percent of this training dataset was split into a test dataset with corresponding salaries.

There is also a testing dataset that does not have any salary information available and was used as a substitute for real-world data.

Information Used To Predict Salaries

  1. Years Experience: How many years of experience

Overview

  1. This is project predicts the salary of the employee based on the experience.

Model Training :-

    model.py trains and saves the model to the disk.
    model.pkb the pickle model

Run App :-
    app.py contains all the requiered for flask and to manage APIs.

Procedure
Open command Prompt and go to given directory and then run python app.py

Download Link

Pneumonia Prediction Using chest x-ray Image Machine Learning

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Buy Now Project Report ₹1001

Chest x-ray: An x-ray exam will allow your doctor to see your lungs, heart and blood vessels to help determine if you have pneumonia. When interpreting the x-ray, the radiologist will look for white spots in the lungs (called infiltrates) that identify an infection. Build an algorithm to automatically identify whether a patient is suffering from pneumonia or not by looking at chest X-ray images. The algorithm had to be extremely accurate because lives of people is at stake. This is a Flask web app designed to analyze a chest x-ray and predict whether a person has TB/pneumonia or not.

Models : 

The model is based on a  convolutional neural network that has been trained on a dataset of 800 images from two sources

The model has an overall accuracy of 83% and an F1 score of 80%.

A negative prediction means that the chest X-ray is most likely normal while the contrary is implied by a positive prediction

Environment and tools

  1. flask
  2. tensorflow

Runtime Python Version  : python-3.8.2

Datasets Link

Read Before Purchase  :

  1. One Time Free Installation Support.
  2. Terms and Conditions on this page: https://projectworlds/terms
  3. We offer Paid Customization installation Support
  4.  If you have any questions please contact  Support Section
  5. Please note that any digital products presented on the website do not contain malicious code, viruses or advertising. You buy the original files from the developers. We do not sell any products downloaded from other sites.
  6. You can download the product after the purchase by a direct link on this page.

 

Credit Card Fraud Detection Machine Learning Project

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Buy Now Project Report ₹1001

Frauds in mastercard transactions are common today as most folks are using the mastercard payment methods more frequently. this is often thanks to the advancement of Technology and increase in online transaction leading to frauds causing huge loss . Therefore, there's need for effective methods to scale back the loss. additionally , fraudsters find ways to steal the mastercard information of the user by sending fake SMS and calls, also through masquerading attack, phishing attack then on. This paper aims in using the multiple algorithms of Machine learning like support vector machine (SVM), k-nearest neighbor (Knn) and artificial neural network (ANN) in predicting the occurrence of the fraud. Further, we conduct a differentiation of the accomplished supervised machine learning and deep learning techniques to differentiate between fraud and non-fraud transactions.

link of dataset=https://www.kaggle.com/mlg-ulb/creditcardfraud

The datasets contains credit card transactions over a two day collection period in September 2013 by European cardholders. There are a total of 284,807 transactions, of which 492 (0.172%) are fraudulent.

The dataset contains numerical variables that are the result of a principal components analysis (PCA) transformation. This transformation was applied by the original authors to maintain confidentiality of sensitive information. Additionally the dataset contains Time and Amount, which were not transformed by PCA. The Time variable contains the seconds elapsed between each transaction and the first transaction in the dataset. The Amount variable is the transaction amount, this feature can be used for example-dependant cost-senstive learning. The Class variable is the response variable and indicates whether the transaction was fraudulant.

The dataset was collected and analysed during a research collaboration of Worldline and the Machine Learning Group of Université Libre de Bruxelles (ULB) on big data mining and fraud detection.

Models

  • Applied various classification techniques like :-
  • Logistic Regression Light
  • GBM K Nearest Neighbors (KNN ) Classification
  • Trees Random Forest
  • SVM XGBoost Classifier

Technology Used in the project :-

  1. We have developed this project using the below technology
  2. HTML : Page layout has been designed in HTML
  3. CSS : CSS has been used for all the desigining part
  4. JavaScript : All the validation task and animations has been developed by JavaScript
  5. Python : All the business logic has been implemented in Python
  6. Flask: Project has been developed over the Flask Framework

Supported Operating System :-

  1. We can configure this project on following operating system.
  2. Windows : This project can easily be configured on windows operating system. For running this project on Windows system, you will have to install
  3. Python 3.6.10, PIP, Django.
  4. Linux : We can run this project also on all versions of Linux operating systemMac : We can also easily configured this project on Mac operating system.

Installation Step : -

  1. python 3.6.8
  2. command 1 - python -m pip install --user -r requirements.txt
  3. command 2 - python app.py

Read Before Purchase  :

  1. One Time Free Installation Support.
  2. Terms and Conditions on this page: https://projectworlds/terms
  3. We offer Paid Customization installation Support
  4.  If you have any questions please contact  Support Section
  5. Please note that any digital products presented on the website do not contain malicious code, viruses or advertising. You buy the original files from the developers. We do not sell any products downloaded from other sites.
  6. You can download the product after the purchase by a direct link on this page.

 

Hypo Thyroid Disease prediction Machine Learning Project

Hypo Thyroid Disease prediction Machine Learning Project

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Hypothyroid diseases (underactive thyroid) is a condition in which the body doesn't produce enough of important thyroid hormones. The condition may lead to various symptoms at late ages. More information about the disease is available at https://www.mayoclinic.org/diseases-conditions/hypothyroidism/symptoms-causes/syc-20350284 .

The Data

The data was from: http://archive.ics.uci.edu/ml/datasets/thyroid+disease. I used "allhypo.data" for the analysis. "allhypo.names" contains the column names of the data. Include the info about primary data processing in the Jupyter notebook list below.

set of algorithms performed to carry out the analysis of the "thyroid-disease" database published in the UCI page
URL data source
data: https://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/sick-euthyroid.data
names: https://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/sick-euthyroid.names


Algorithms

  • Naıve Bayes
  • KNN
  • ANN
  • Random Forest
  • SVM
  • FSF
  • PCA
  • LCA

Related sources

Ionita, Irina. (2016). Prediction of Thyroid Disease Using Data Mining Techniques. BRAIN. Broad Research in Artificial Intelligence and Neuroscience. Vol.7. pp.115-124.
URL: https://www.researchgate.net/publication/321145710_Prediction_of_Thyroid_Disease_Using_Data_Mining_Techniques


Ammulu K., Venugopal. (2017). Thyroid Data Prediction using Data Classification Algorithm. IJIRST –International Journal for Innovative Research in Science & Technology. Vol.4. Issue 2. July 2017. ISSN (online): 2349-6010
URL: http://www.ijirst.org/articles/IJIRSTV4I2054.pdf


Geetha K., Santosh S. Eficient Thyroid Disease Classification Using Differential Evolution with SVM. Journal of Theoretical and Applied Information Technology. Vol.88. No.3. E-ISSN: 1817-3195
URL: http://www.jatit.org/volumes/Vol88No3/4Vol88No3.pdf


Banu, Gulmohamed. (2016). Predicting Thyroid Disease using Linear Discriminant Analysis (LDA) Data Mining Technique. Communications on Applied Electronics. 4. 4-6. 10.5120/cae2016651990. URL: https://www.caeaccess.org/research/volume4/number1/banu-2016-cae-651990.pdf


Lou H, Wang L, Duan D, Yang C,Mammadov M (2018) RDE: A novel approach to improve the classification performance and expressivity of KDB. PLoS ONE 13(7): e0199822. URL: https://doi.org/10.1371/journal.pone.0199822

Read Before Purchase  :

  1. One Time Free Installation Support.
  2. Terms and Conditions on this page: https://projectworlds/terms
  3. We offer Paid Customization installation Support
  4.  If you have any questions please contact  Support Section
  5. Please note that any digital products presented on the website do not contain malicious code, viruses or advertising. You buy the original files from the developers. We do not sell any products downloaded from other sites.
  6. You can download the product after the purchase by a direct link on this page.

Live Face Mask Detection Project in Machine Learning

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Buy Now Project Report ₹1001

Face Mask Detection web applicaion built with Flask, Keras-TensorFlow, OpenCV. It can be used to detect face masks both in images and in real-time video.

The goal is to create a masks detection system, able to recognize face masks both in images, both in real-time video, drawing bounding box around faces. In order to do so, I finetuned MobilenetV2 pretrained on Imagenet, in conjunction with the OpenCV face detection algorithm: that allows me to turn a classifier model into an object detection system. Live Face Mask Detection Project in Machine Learning.

Technologies

  • Keras/Tensorflow
  • OpenCV
  • Flask
  • MobilenetV2

Installation:

You have to install the required packages, you can do it:

  • via pip pip install -r requirements.txt
  • or via conda conda env create -f environment.yml

Once you installed all the required packages you can type in the command line from the root folder:

python app.py

and click on the link that the you will see on the prompt.

Datasets

The dataset used for training the model is available here.

Loan Eligibility Prediction Python Machine Learning Project

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Loan Eligibility Prediction Python Machine Learning Project. Loan approval is a very important process for banking organizations. The system approved or reject the loan applications. Recovery of loans is a major contributing parameter in the financial statements of a bank. It is very difficult to predict the possibility of payment of loan by the customer. In recent years many researchers worked on loan approval prediction systems. Machine Learning (ML)techniques are very useful in predicting outcomes for large amount of data.

Key Features

  • Interface to predict loan application approval
  • data insights withhin Jupyter Notebook
  • Trained Model
  • multiple machine learning algorithms.

Technology :

  • Flask==1.1.1
  • html5lib==1.0.1
  • json5==0.8.5
  • jsonify==0.5
  • numpy==1.16.5
  • pandas==0.25.1
  • scikit-image==0.15.0
  • scikit-learn==0.21.3
  • scipy==1.3.1
  • gunicorn==19.9.0
  • requests==2.22.0

Loan Defaulter Prediction Machine Learning Projects

Subscribe YouTube For Latest Update Click Here

Latest Machine Learning Project with Source Code

Buy Now ₹1501

Using supervised machine learning to train a model with credit default data to determine the probability and/or classification (“default” vs “non-default”) of the user’s liability. The UI will take user input such as, such as education level, sex, marital status, payment history and income, and will return a classification.

An app like this would be useful for financial and lending institutions to understand and manage the risk of their loans and lending portfolios.

 

Goals/Outcome

  • Determining probability of user liability
  • Creating an interactive UI that will take users input and return an output
  • To determine if a neural network vs logistic regression is the better model for classification

Models Created

  • Logistic Regression
  • Random Forest Model
  • Deep Neural Network

About

Probability of Credit Card Default, Machine Learning

Technologies Used : -

  • beautifulsoup4==4.6.0
  • certifi==2018.4.16
  • chardet==3.0.4
  • click==6.7
  • Flask==1.0
  • gunicorn==19.8.0
  • idna==2.6
  • itsdangerous==0.24
  • Jinja2==2.10
  • MarkupSafe==1.0
  • numpy==1.14.3
  • pandas==0.22.0
  • python-dateutil==2.7.2
  • pytz==2018.4
  • requests==2.18.4
  • scikit-learn==0.19.1
  • scipy==1.0.1
  • six==1.11.0
  • SQLAlchemy==1.2.7
  • urllib3==1.22
  • Werkzeug==0.14.1